
Numerical Quadrature and Asymptotic 
Expansions 

By J. N. Lynesst and B. W. Ninham 

1. Introduction. If a function has a singularity of any type on or near the interval 
of integration, the (oiiventional nmethods of numerical quadrature based on poly- 
nomial interpolatioin are difficult to use effectively. Special methods exist for func- 
tions having particular singularities. The object of this and a later paper is to de- 
velop a simple unified nmethod capable of dealing with a wide class of functions. 
This class includes all complex analytic functions which do not have essential 
singularities as well as those whose essential singularities are not too close to the 
iintegration interval. The technique which we advocate takes explicit account of 
algebraic and logarithmic singularities to obtain a complete asymptotic expansion 
of the error functional. In the case of trapezoidal rules this is a power series in 1/M2 
where in is the niumiiber of funictioin evaluations. We show that for integrands of the 
class mentioned above the form of the expansion can be written down by inspection. 
As in the Euler-MNaclaurin summationi formula which is a special case of such an 
expalnsion, the coefficienits depeind on the derivatives at the endpoints and are in 
general generalised zeta functions or linear combinations thereof. 

To indicate further the principal features of the method, we consider the integral 

1 (1 
(1.1) If | f(t) cit t-314(_- t)-112h(t) dt 

wlhere h (t) and all its derivatives are continuous in 0 ? t ? 1. We use the approxi- 
mation obtained from the midpoint trapezoidal rule, defined by 

(1.2) Rf[mO]f = 1 f(2j -1) 

If f (x) were a function without singularities in the closed interval [0, 1] the error 
involved could be written down using the modified Euler-Maclaurin expansion 

Ef = Rf[7nO]f - If = - I42 [f(1)(1) -f(?)] 

(1.3) 
+ 5760m4 [f(3)(i) - f(3)(0)] + . 

We show in Sectioins 4 and 3 of this paper that integration rules which employ 
polyinomial approximation are based on the assumption that the error functional 
Ef always admits an asymptotic expansion of precisely this form. 

In the example Eq. (1.1) above, the expansion (1.3) is of course not valid, and 
such rules are not particularly efficient. In Section 7 we determine the appropriate 
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expansion Ef, which in this case takes the form 

lm ,01 ao a, 2 o(M-13ZO4\ Rimi f-If =-1/ ?-+ + O(n'14 
inl1/4 in514 + 

n914 
(1.4) 

+ bo? + 
i + b2 + O(Mr712). 

In applications expansions such as this may be used as a basis for Romnberg 
integration. Alternatively, since expressions for a, and b, are available, the expan- 
sion may be used directly. A judicious combination of both of these approaches is 
also possible. 

The essence of this method of quadrature is to treat Eq. (1.4) as an equation, 
all of whose terms can be computed except the one unknown If. In the conventionial 
approach, one regards Rl7 'If as an estimate for If with a (small) error Ef. By our 
approach, it is of no consequence whether Ri" O1f is a good estimate or not for If. 
Eq. (1.6) fails to be an identity in the general sense of the term only in as much 
as the right-hand side is the sum of two asymptotic expansions. For a sufficiently 
large m, which in practice is surprisingly small, each of these expansions has the 
characteristic property that successive terms at first decrease in magnitude, and 
then increase. In certain cases there is some justification for truneating this ex- 
pansion (usually after its smallest term) and for then assuming that the error is 
smaller than the final included term and of opposite sign. However, this is not 
generally true even in simple nonpathological cases. Thus the final term can oinly 
be used as a rough guide in this context. Truncation of this type is usually justified 
only in the sense of polynomial approximation. 

The work is arranged as follows: In Section 2 we introduce a simple generalisa- 
tion of Poisson's summation formula which is fundamental to the subsequent, work. 
In Sections 3-5 we treat conventional quadrature methods for functions without 
important singularities from this point of view. In the remainder of this paper we 
investigate and classify various asymptotic expansions which arise when singulari- 
ties occur on the interval of integration. Those with which we are principally con- 
cerned here are generalisations of the traditional Euler-Maclaurini expansioni. In a 
forthcoming paper we shall deal with functions with singularities close to the in- 
terval of integration. 

2. The Fundamental Summation Formula. One form of the Fourier theorem 
(of Whittaker and Watson [2]) may be stated as follows: If f(x) exists in the interval 
10, 1] except at a finite nunmber of distinct values of x and 

(i) f (x) = f (x + 1) for all values of x for which f (x) exists, 
(ii) lime+O 

I [f(x + e) + f(x - E)] = f (x) for all values of x for which f(x) 
exists, 

(iii) fJ f(t) dt exists and if the integral is improper, is absolutely convergent, 
then 

(2.1) f(x) = E exp (-27rirx) jf(t) exp (27rirt) dt 
r- e no 

for all values of x for which f (x ) exists. We note that there is no condition of bounded 
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variation applied to f(x). It follows by trivial rearrangement that 

(2.2) f(t1) - f(t) dt = exp (-2rirtj) ff(t) exp (27rirt) dt 

where the prime on the summation sign denotes omission of the term in the sum 
for which r = 0. If further we add linear combinations of this with different values 
of tj and corresponiding weights a, ,j = 1, 2, , m, we have 

1n 1 00 mA 1 

(2.3) , aj f(tj) - ff(t) (it = ' aj exp (2rirtj) jf(t) exp (2irirt) dt 
3=1 rT--X j= 

where 

(2.4) Ya = 1. 
j=1 

This almost trivial result gives the error associated with any weighted sum of 
function evaluations or integration rule used to approximate an integral. It is of 
fundamental importance in the construction of error expressions, both for numerical 
quadrature and in modified form for numerical interpolation and differentiation. 
We refer to Eq. (2.3) as the fundamental summation formula. The usual form of 
Poisson's summation formula for finite ranges is a special case. 

We note in passing that a much simpler proof of Eq. (2.1) than that usually 
given can be obtained via generalised function theory, which avoids many of the 
difficulties associated with the classical theory of Fourier series. Thus the Fourier 
expansion of the periodic delta function has the form (Lighthill [1]) 

00 00 

(2.5) E b(t - tj- m) = 1 + 2 cos27rr(t - t,). 
m=-oo r=l 

Poisson's summation formula follows if we multiply both sides of this equation by 
f(t) and integrate from - oo to oo. Eq. (2.1) follows if instead we replace f(t) by 
f(t)H(1 - t)H(t), where H(t) is the unit step function (defined in (6.4) below). 

3. Particular Integration Rules. Notation. We shall find it convenient to rewrite 
the identity (2.3) in the abbreviated form 

(3.1) Rf -If = Ef 

where the integration rule Rf is defined by 

(3.2) Rf(x) = Z a1f(tj); Ea, = 1 
j=1 j=1 

and the exact integral If is 

(3.3) If f ff(t) dt. 

The error functional Ef is defined by 
00 1 

(3.4) Ef = Rf-If = >' dr(R) f f(t) exp (2wrirt) dt 
r o? 
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with 

dr (R) = a, exp (-27rirt,) = R (exp (-27rirx)) 
j=l 

a coefficient which depends only on the rule. 
In Section 4 we derive explicit expressions for Ef corresponding to a general 

rule Rf. In this section we discuss in greater detail the form of Eq. (3.4) for certain 
rules. 

The simplest of the conventional integration rules are those of trapezoidal type, 
which assign equal weight 1/m to function evaluations at m equally spaced points, 
the distance between adjacent points being 1/m. If the first point for function 
evaluation is t1 = 1/2m, the rule is the midpoint trapezoidal rule which we write as 
REm 0]. If the first point is t1 = (1 + a)/2m, I a i < 1 we term this rule a general 
trapezoidal rule REm Q. The conventional endpoint trapezoidal rule R[m 1] is ob- 
tained if we set a = 1, and remember the convention by which f (1) is replaced by 
[f (0) + f (1)]. Explicitly, we write 

(3.6) Rf[malf = 
I 

Zf(2j - 1 + ia) a < 1, 

( * ) a ~~~~m j=1 2m)' 
(3.7) Rt[`O]f = 1 Z:f(2j- 1) 

(3.8) REm'1! = mE f(i/m) + 1 [f(O) + f1)]. 
We define ta by 

(3.9) Rlalf =f(t.), ta =a +2 a I <1. 

The most general rule which we consider assigns equal weight (possibly zero) to 
the points x = 0 and x = 1, and arbitrary weights to points within the integration 
interval. This rule may be written 

(3.10) Rf = lao[f(O) + f(1)] + E ajf(t.) = E a,R[ f aif. 
j=l j=O 

The fundamental identity for trapezoidal rules is of the particularly simple 
form of the Poisson summation formula. Writing the error functional corresponding 
to the rule RfE 

' by El" ", we have 
00 1 

(3.11) R[ma]f - If E[mal]f = El dr (R[Jma) f(t) exp (27rirt) dt 
rT=-?? 

where from Eq. (3.5) 
m 

dr(R[ma]) - Z exp (- 2irir(a + 2j - 1)/2m) m j=1 

(3.12) = exp (-7ri(a - 1)r/m), integer, 

= 0 otherwise, 
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so that 

(3.13) Rm'alf - If = E' (-i)r exp (ria) f(t) exp (2rirmt) dt. 
r=-ooO 

For the midpoint and endpoint trapezoidal rules, Eq. (3.13) take the form 

(3.14) Rf[mO]f- If = >' (-_)r iy f(t) exp (27rirmt) dt, r=-00 
00 1r 

(3.15) I?"[m l- If = >3,' f f(t) exp (2irirrnt) dt. 

Other conventional rules are usually constructed to be of a specified degree. 
For example the Gauss-Legendre rule of degree (2m + 1) which uses m points for 
function evaluation has the form 

(3.16) R[G, m]f = L= 
a[G, 

nilf (t [in]) 
j=1 

where the numbers t,l Gn] are the roots of the Legendre polynomial of degree m, 
normalised in the interval (0, 1), and a, m] are related numbers. Using Eq. (3.4) 
we write 

00 1 

(3.17) R[Grnlf - If = 3' r(R [Gml) f f(t) exp (27rirt) dt 

wvhere 

(3.18) d, (R [ Gnl) = L> a[ G, ni exp (2,rirt 1G, m] 
J=1 

We note at this stage that the smallest argument of the Fourier transforms 
which occur in the sums on the right-hand sides of Eqs. (3.13) and (3.17) are m 
and 1 respectively. In the sequel we consider methods of estimating or eliminating 
Ef. From this poiInt of view the magnitude of Ef is of secondary importance to its 
amenability to this analysis. Since an asymptotic estimate of a Fourier transform 
may be made more simply for large values of the argument than for small, this 
leads to a preference for trapezoidal rules over the Gauss-Legendre rules. The 
complication inher'ent in calculating coefficients such as those in (3.17) enhances 
this preferen(ce. 

4. Expansions of the Euler-Maclaurin Type. The most familiar asymptotic ex- 
pansion associated with the error fuinetional of a quadrature rule is the Euler- 
Maclaurin summation formula. This formula in its traditional form (4.23) below 
expresses the error funetionial corresponding to the endpoint trapezoidal rule in 
terms of the derivatives at the endpoints of the interval. It follows from the modified 
Poisson sunimmation formula (3.15) in a straightforward manner. If f (t) and first w 
derivatives are continuous in 0 ? t < 1 and a is any integer, we may integrate by 
parts as follows: 

f() ep ( ) d f(1) - f(0) f'(1) - f'(0) f(t)exp 27rirt 
+ ( 

dt 
27rir (27ir) + ..d 

(4.1) (U)() f (w)(0) 'fW1 j(?) (0)e2irt 

? (-1)w&f + (-1)w?1 dtl 
(27rir)w?l Jo (27rir)w+l 
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Inserting this into the right-hand side of (3.15) and carrying out the sum over r we 
find the traditional form (4.23) below of the Euler-Maclaurin summation formula. 
This derivation is due to Poisson. 

We now derive a slightly more general form of this forimiula. Before doing so, ve 
collect together here for convenient reference, the definitions of the Riemaanii zeta 
function, various associated functions and related results (see e.g., Whittaker and 
Watson [2] or Erd6lyi et al. [3]). These are required both here and in our later 
analysis. 

For Re s > 1, the Riemann zeta function r (s) may be defined by 
or, 

(4.2) c(s) = E Re s > 1. 

For Re s < 1, P (s) may be defined in terms of (4.2) using the Riemanit relation 

(4.3) P(1- s) = ( (2- 1)w cos [7rs/2]k(s), all s # 1. 

Associated functions include 

(4.4) t(s) = (1 - 21s)(s) - E (- ' Re s > O, 
r=1 rs 

and the generalised zeta function 
00 

(4.5) P(s, a) = E (a + r) 

2s!1 
0 

sin [27rar - 7rs/2] (4.6) P(-s, a) =(2w).+' 1 Re s > 0. 

It is convenient to introduce a periodic generalised zeta function (s, a) defined by 

(4.7) D(s, a) = P(s, a); a - a = integer 0 < a < 1. 

The following relations are easily deduced from the above relations 

(4.8) P(s, 1) = P(s)y 

(4.9) P(s, 2) = (2 - lW(s) 2- 2((s). sin [rs/2]t(1 - s). 

In this section and in Section 5 we need only integer values of s; in this case these 
functions and relations may be simply expressed in terms of Bernouilli polynomials 
and numbers. If p is a positive integer 

(4.10) 2~(2p) - (2p) 
(21r)2p (2p)! 

(4.11) (1 -2p) = - "B2p/2p, 

(4.12) (-2p) = 0, (0) = -2, 

(4.13) v(-p, a) = -B1+p(a)/(1 + p). 

To obtain a general form of the Euler-Maclaurin summation formula we sub- 
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stitute (4.1) into (3.4). This gives for the general rule Rf, 

(4.14) Ef = Rf If = E ) [f()(1) - f(8)(O)] + J )(t)(R, t) dt 
S-A) s! 

where 

( 4.15 ) c!R) - (1)Rs ERe [dr(R) exp (-7ri(s + 1)/2)] 

and 

(4.16) cpw+1(R, t) = 2( _1)w+1 E Re [dr(R) exp (2irirt - 7ri(w + 1)/2)] 
r=1 ~~~~(2iirr)w+l 

We now evaluate the coefficients c8 (RI). We consider first the coefficient 
c8 (R[rn a]) _c[m a]. Substituting the expression (3.12) for dr(Rlmt a]) into (4.15) 
and usiing (4.6) above, we find 

(4.17) c, = - v(-s, t.) /mS?l 

Thus the coefficient corresponding to the one point rule is 

(4.18) c" = - (-s, ta). 

Since 

(4.19) Rf L a,R[" ailf 

it follows that 

(4.20) c8(R) = Za,c,"s a Y] - _ aj1(-s, taj). 

Expansion (4.14) with these values for the coefficients constitutes a general 
form of the Euler-Maclaurin summation formula. 

For trapezoidal type rules RIn "If, expression (4.20) may be replaced by its 
simpler form (4.17). For the endpoint and midpoint trapezoidal rules a = 1 and 
0 and tc = 1 and 2 respectively. In these cases the generalised zeta function in 
(4.17) may be expressed in terms of zeta functions with positive integer argument 
using relations (4.8), (4.9), and (4.3). More precisely, 

(4.21) s !(-s 1 = (s +1) sin [rs/2], 
s ~ms+ls! - 2r).+ 

(4.22) s! 
_ ( - (s +1) sin [rs/2]. 

Insertinig these values into (4.14) leads to the Euler-Mlaclaurin summation formula 
in its traditional form, namely 

(4.23) Rf[ml]f- If = 2 E ( -I)n-I (2n)2 [I2f (1) 
f 
(2nl)(0) 

(4.24) Rf[m?Of - If = 2 Z (-I)n (2n [f 2-n (1) f (0)], 
n1 (2rm)2n 

As meiltioned above these relations may be derived directly from (4.1) aild 
(3.14) without invoking the more general form (4.14). 
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5. Applications to Problems of Numerical Analysis. In this section we discuss 
several integration rules and interpolation in order to demonstrate explicitly their 
fundamental connection with the identity Eq. (2.3) and the Euler-Maclaurin ex- 
pansion. 

(a) Integration Rules of Specified Degree. An integration rule of degree d is one 
which integrates exactly all polynomials of degree d or less. A simple example is 
Simpson's rule 

R - 2R[m 0] + 4 R[m". 

The degree of this rule may be derived from the expression obtained by taking the 
appropriate linear combination of (4.23) and (4.24). Since 2t (2) + v (2) = 0, 
the first term in the resulting expansion for Ef is zero, and the first nonzero term is 
that containing a factor f(3) (1 ) - f(3) (0). Thus if f (x) is a polynomial of degree 3 or 
less Ef = 0 and Rf = If. This establishes that the degree of Simpson's rule is at 
least 3. 

In general the rule 

(5.1) Rf= Zajf(ta,) 

is of degree d if aj and taj are chosen so that 

Z aj = 1, 
(5.2) 

ExW =Rxw - Ixw = 0; w= 1,2,. ,d. 

These equations may be written as 

(5.3) Rx =Z ajtw=Ix = + 1; w = 0, 1, d. 

Comparison with Eq. (4.14) shows that the rule R integrates all polynomials of 
degree d or less, if and only if 

(5.4) aj = 1, c8(R) = 0, s = 0, 1, , (d-1). 

The equivalence of the requirements (5.3), (5.4) may be demonstrated explicitly 
by means of Eqs. (4.10)-(4.18), through which Eqs. (5.4) may be replaced by 

(5.5) E ajBo(ta1) - 1, E ajBi+s(ta3) = 0, s = 0, 1, , d- 1. 

Using the addition formula for Bernoulli polynomials, namely 

_ 1 ~ w 1 
(5.6) t3 - (w+ (W + 1) Bn(t), w = 07 17 

we find 

Rxw=Zajt,j=Zaj( 1B>1 (w 

(5.7) 
(to + 1) n-O n 

/ 

= 1 E (w + 1) Z ajBn(ta) = ( + ) , d 

which establishes Eq. (5.3) as a consequence of (5.4). 
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The Romberg method of integration implicitly establishes a rule of specified 
degree in an indirect manner. This rule may be written 

(5.8) R = oyR[ml"] + 72RM2'1] + . . . + ,yRnt l] 

where mi ... mt are different integers, usually mi = 2i1, and yi are chosen so that 

t t 
(5.9) ^Yi = 1, Yi =0, s = 0,1, ... (t- 1). 

Thus 

(5.10) c,(R) = ZytC [mD l] - Z 3 c [1,] = 0, s = 07 . (2t - 1). 

This follows for even values of s because, by Eq. (4.21) c81[ "1 = 0 if s is even, and 
for odd values of s because the -yi are defined according to Eq. (5.9). 

It is therefore apparent that both Gaussian and Romberg integration may be 
based on elimination of the early terms in the Euler-Maclaurin expansion for the 
error functional. It follows that in general these methods give reliable results in 
cases where the Euler-Maclaurin expansion is a useful expansion, but that otherwise 
these rules should not be expected to work well. 

(b) Monte Carlo Method. In this method, m values of t, are chosen at random 
and, in its most commonly used form, assigned equal weight aj = 1/m. Estimation 
of the error term then becomes a problem in the theory of stochastic processes. The 
statistical properties of the error functional are intimately connected with Pearson's 
random walk problem. The coefficients dr (R) which occur in the identity Eq. (3.4) 
for this rule are 

(5.11) dr (R) = a, exp (-2irirt,) = p exp (2iri4 (r)). 
j=1 

The modulus of this sum is precisely the distance travelled after m steps by a two- 
dimensional random walker, who takes steps of length a1, ,a2, * , am at angles 
01 = 2irt, 02 = 21rt2 ,. 7 Gm = 21tm between successive directions and the x axis. 
The distribution of distances travelled in m steps is that of p(0', 7 ... 7 O) which 
results from allowing each Oj to take on any value between 0 and 2wr with equal 
probability. The solution to this problem is well known (see, e.g. Watson [4]), and 
the probability distribution P (s) = IPr p < s } is given by Kluyuer's formula which 
yields 

(5.12) P(s) = Pr {p < sl = s / Jl(sv) H Jo(vaj) dv 
j=1 

where JO and J, are Bessel functions. 
The statistical properties of p are independent of r. In the special case when all 

the step lengths are equal, aj = 1/m; if in is large, the important part of the inte- 
grand of Eq. (5.12) is that for which v is small. For such values of v we have 

(I5.13 ) .1O (t) exp (- t2/4). 
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Using Weber's first exponential integral, Watson [4, p. 393], we find that the den- 
sity function is 

dP(s) = f VJ (J (m)) dv 

(5.14) ( 
I f vsJo(vs) exp (-v2/4m) dv = 2msems 

o~~~~~~~~~~~~~~~ 
which is a Gaussian whose expected value is (V\r/2)1?n12. 

The expression for the error term then becomes 

Rf - If E i dr(R) I exp (2iri4(r)) f(t)e27rirt dt 
r -0fo 

where p = I dr(R) I is a random variable whose distribution is given by Eq. (5.14). 
(c) Interpolation and Differentiation. These topics may also be treated in a 

similar manner. Choosing weights aj so that 

57 (5.16) a0 = -Za,= 1 
j==1 

it follows that 

(5.17) f(to) - ajf(tj) = 2 Z Z aj jf(t) cos 2irr(t - tj) dt. 
j=l r=1 j=O 

This gives the error associated with the most general interpolation formula. If we 
integrate by parts successively, and perform the sums over r using Eqs. (4.6) and 
(4.13), we have 

f(to) - f a1f(t,) 
j=1 

(5.18) f 

= -E a,{[f(1) - (0)]B1(tj) + [f'(1)- f'(0)]B2(t1) + * . 
j=o 

If the interpolation formula 
m 

f (to) E ajf (tj) 
j8=1 

is to be exact whenever f (x) is any polynomial of degree d or less, the coefficients of 
[f(S) (1) - f(S) (0)]; s < d, in (5.18) must be zero. This implies that a1 and tj satisfy 
the set of equations 

m 
(5.19) E a,B,(tj) = B,(tj), n = 0,1, 1 .. (d - 1), 

j=l 

whose solution gives the Lagrange coefficients. A number of other interpolation 
formulae may be considered using similar techniques. A similar method can be used 
to handle differentiation. 

6. Lighthill's Procedure. If f(x) or its early derivatives are discontinuous in the 
interval 0 < x < 1, the theory of Sections 3, 4, 5(a) and 5 (c) is no longer valid. 
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The conventional Euler-Maclaurin series is not an infinite asymptotic expansion 
and has to be terminated by an error remainder term. However, the theory of Sec- 
tion 2 is independent of whether or not f (x) or its derivatives are continuous. We 
therefore return to Section 2 and develop asymptotic expansions more suited to 
computational purposes, in those cases for which f (x) has simple algebraic or 
algebraico-logarithmic singularities on the integration interval. We now consider 
an integrand f (x) of the form 

(6.1) f (x) = x (1 - x - tk I' sgn(x - t1) |x - t1 1h(x) 

where h (x) and its derivatives are continuous in the interval 0 < x < 1, and , 
fy, S, and X are not integers. 

To proceed further we require an asymptotic expansion for the Fourier trans- 
form 

1 

(6.2) g(r) = f f(t) exp (-2irirt) dt 

with f (x) given by Eq. (6.1). The expansion Eq. (4.1) which was obtained by 
integration by parts is not valid for this function. 

Although appropriate asymptotic expansions with a remainder term exhibited 
explicitly can be found by transform techniques, we find it convenient to appeal to 
the powerful, simple and systematic method of Lighthill [1] who uses generalised 
function theory. The result is the expansion (6.15) below. We restate here the 
prescription developed by Lighthill, together with the theorem which justifies this 
prescription. 

The Fourier transform required is that of the generalised function 

(6.3) 4 (x) = f (x)H (x)H (1 - x) 

where H (x) is the step function defined by 

H(x) = 0, x < O, 

(6.4) 2, X =0, 

1, x > 0. 

+k (x) coincides with f (x) in the interval of integration, and is zero elsewhere. The 
behaviour of the Fourier transform 

(6.5) g(r) = ] O(t) exp (-27rirt ) dt 
00 

depends critically on the behaviour of 4 (x) in the neighbourhoods of its singulari- 
ties. Let these lie at x = to, tl, t2, * , tm w-here to = 0 and t1 = 1. Suppose further 
that corresponding to each singularity tj we construct an 'approximating' function 
Fj (x) with the following properties: 

(6.6) (i) +(x) - Fj (x) has an absolutely integrable Nth derivative in a 
neighbourhood of x = tj . 

(6.7) (ii) F, (x) is a linear combination of functions of the types I x - t, I 

Ix -t, I'sgn(x - t), I x -tj lIn Ix - t I and Ix -tj I' n I x -tj I sgn (x - t3) 
for different values of a. 

THEOREM1. If F,(x), j = 0 * m satisfy these conditions, and have as their Fourier 
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transforms Gj (r); 

(6.9) Gj(r) = f Fj(t) exp (-2irirt) dt. 

Then an asymptotic expansion for g (r) is 

(6.10) g(r) = , G,(r) + O (IrN) as 1ri 1 
j=o 

This theorem provides a method for writing down an asymptotic expansion for the 
Fourier transform of any function with singularities of the type (6.7) above. We 
need to know only the Fourier transforms of functions of that type, which are 
listed by Lighthill [1, p. 43]. 

The singularities of f (x) defined by Eq. (6.1) lie at 0, 1, tk and tj . We obtain 
the required approximating functions as follows. We define functions t'j (x), which 
are continuous and have continuous derivatives at x = tj, by 

(f (X) = X o(X) = (1 - X) t'11 (X) = I X - tk I {1k (X) 

= .x - t= I' sgn (x-ta )- 1 (x). 

The approximating functions Fj(x) are constructed from ilj(x) by retaining only 
the first N terms in the power series expansion of 4lj (x) about x = tj . Thus 

N-1 V/ (s) (0o) 
Fo(x) = Z -P(O X'?8H(x), 

N-1 V/(s) 

F1(x) = E (-1)81 (1 (1 - x)+sH(1 -x) 
8=o s! 

(6.12) N-1 4k(s) t)'+ 

Fk(X) = E t IX - tk I [sgn(x - tY)], 
s=O 8. 

N-1 (ts) 
Fi(x) = f' -(1It| x - ti I [sgn(x -t)]'+'. 

These functions satisfy conditions (i) and (ii). The Fourier transforms of individual 
terms are given by Lighthill [1, p. 43]. The results we require are listed below. In 
terms of a function 

(6.13) h(O, r) =2rrs 

we have 

00 fx#+'H(x) exp (2irirx) dx = h(f + s, r), 

(1- x)w+IH(1 - x) exp (-2irirx) dx = h(w + s, -r), 

(6.14) fOI 
- 

tk +e-2 dx = exp (-2iritkr)[h(-y + s, r) + hQ(y + s,-r) 
00 

J x - t I+ssgn(X - ti)e-2irx dx 

= exp (-27ritjr)[h(6 + s, r) - h(& + s,-r)]. 
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Substitution of these results into Eq. (6.10) yields 
1 N-1I 
ff(x) exp (-2irirx) dx = N- !i{o"'(O)h(O + s, r ) 

(6.15) + (-1 )5 (1)h( + s, -r) 

+ exp (-2writkr)'k (s)(tk)[h(-y + s, r) + h(y + s, -r)] 

- exp (-2itgr)Xt(s)(ti)[h(b + s, )- (r-1)sh( + s, -r)]} I+ 0(1 r I'v). 

This is the principal result of this section and provides the basis for our subse- 
quent analysis. We note that while the generalised functions on the right-hand side 
coincide with, and can therefore be interpreted in terms of, ordinary functions, the 
derivation of Eq. (6.15) rests on generalised function theory. For example, the final 
equation of the set (6.14) is meaningless if interpreted in terms of ordinary func- 
tions for most values of S. 

7. The Euler-Maclaurin Formula for Endpoint Singularities. We now use this 
result to find an asymptotic expansion for Ef associated with 

(7.1) f (x) = xi (1 - Wh(x), 

where h (x) and its derivatives are continuous within the interval of integration, 
and consider in detail an arbitrary trapezoidal rule R[m a], a I < 1 Eq. (3.13) 
asserts that 

M00 
1 

(7.2) E[m af = - = Z,' (-1 )r exp (-rira) f(t) exp (2wrirmt) dt. 
r=-? 

The integral on the right-hand side has the asymptotic expansion given by (6.15). 
Since f(x) has endpoint singularities only the first two terms contribute, and sub- 
stitution into (7.2) yields 

]f = 
N-1 q (s) (o 

Cs[ 

N-1 (s) 

(7.3) Ea31 E = Z 0j C8[nI(O, 1) + Z "" (1 IS 1, @) + 

The coefficients in this expansion have the values 

C[msa(0 1) = E (-l)exp (-rira) (13+s)! 

(7.4)r2ir08+ 
S) > -1- lal < 17 

where we have used expression (6.13) for h(13 + s, r) and Eq. (4.6) for the gen- 
eralised zeta function. Similarly 

(7.5) ds[ma (1, c) = + )(-X - s,1 - t,), X > -1, a I < 1. 

For the special case of an endpoint trapezoidal rule for which a = 1, we have 

(7.6) c(, [13(0) = (-1) ds[ml( = ( , ) s > 0; > >0 
- 0, s = 13 = 0. 



NUMERICAL QUADRATURE AND ASYMPTOTIC EXPANSIONS 175 

Inserting these values of cs and d, into (7.3) gives the asymptotic expansion for 
the error functional associated with the rule Rim ]. 

The corresponding expansion for an arbitrary rule may be obtained as in Section 
4 by taking appropriate linear combinations of the expansions corresponding to 
the one point rules R'1 a]. The coefficients in this expansion involve linear com- 
binations of generalised zeta functions and we do not write it out here. We give 
explicitly the expansions corresponding to the much simpler midpoint and endpoint 
trapezoidal rules. These are 

R m'0f - If = NE / (- - s, + ) 
s==O s! 

(7.7) N-i 
I 

+ z, 2 
- + O(m_) 

R f If _ 

f s o ~st! m#+S+l 

(7.8) 0(2 

N-1 
j(_ip() (1W C 0) v (M-N-8) 

+ <' (-1) xti1 (1(-w - s) + O(mNf), + E 
l~~sm(#+s?l) 

where so, si = 0 unless fi, w = 0 in which case so, si 1. Both expansions (7.7) 
and (7.8) reduce to the usual forms (4.23), (4.24) if: = co = 0 or if : and co are 
both integers. The generalised zeta functions which oc(cur here may be expressed in 
terms of zeta functions of positive argument using Eqs. (4.3) and (4.9). An integral 
representation for the remainder term in these expansions (7.7), (7.8) for the par- 
ticular case that one of the exponents 3 or co is an integer was first given by 'Navot 
[5]. 

Expression (7.3) for an arbitrary trapezoidal rule has the form 
N-1 N-1 

(7.9) Rtm,af - Jf = E a. + E bs + O(mrJN) 

where a, and bs are indepenident of m. Thus a modified form of Romberg integration 
is possible, based on the values of Rfm[ If for different values of m. Eqs. (7.7) and 
(7.8) are special cases with a = 0 or 1 respectively. These have the marginal ad- 
vantage that the coefficients involve zeta functions rather than generalised zeta 
functions. If the expansions are used directly it is easier to calculate ordinary zeta 
functions or, as a rough guide, to estimate their magnitude. 

Logarithmic Singularities. If we consider a function f (x) with integrable loga- 
rithmic singularities, for example 

(7.10) f (x) = xo ln x (1 -x) 'h (x), 

the appropriate generalisation of the Euler-Maclaurin formula may be derived 
in precisely the same way. However, it is simpler to differentiate Eqs. (7.3), (7.7) 
and (7.8) directly. 

If we differentiate Eq. (7.9) with respect to 3, and multiply by x we have 

(7.11) R 1m f - If = E -- + a- - + E + O(m ) 
S=O m #+8+l s0= W++ 
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where f now represents the function of Eq. (7.10) and not that of (7.1) and a, , 
b, and es are independent of m. The coefficients b8, aS are the same as those of Eq. 
(7.9) but es involves derivatives of zeta functions. The application of Romberg 
methods, based on (7.11) is in principle possible, but clearly rather more compli- 
cated than in the case involving only algebraic endpoint singularities. 

Similarly the method may be extended to functions with singularities of the 
form Ix - tk a (ln x - tk )fnand x - t Ia (ln I x -tll )n sgn (x - t1). 

8. The Generalised Euler-Maclaurin Expansion. We now deal with the more 
general function of Section 6, 

f(x) = x (1 - x) x - tk | x - t1 I' sgn(x - t1)h(x). 

Again we confine ourselves to stating the result for R[m ] the trapezoidal rule. As 
before the corresponding expansions for an arbitrary rule may be obtained by taking 
linear combinations of Rk1 a with different values of a. The same procedure used 
in Section 7 gives 

E[nt a]f = [m' ]f - If 
N-1 

E 
- {5t(s (O)C8[m a] (0 3) + VIt,(") (1)d[m' a] (1X ) 

s=O S! 
(8.1 ) + ik (s) (tk) [Cs[m a] (tk ,Y) + ds mI(tk, 

Y) 

+ ,t I(8) (tL)[C,[m ma] (t1, 8) - ds[m a] (t1, 8)]} 

+O(M-N), IaI<1 
where 

cs a] (tk , t) = ;(-d-s, t t-mtk)/m++1 

(8.2) a[m a] (tk , j3) = (-1)8+(3- S- mtk-8+ 

The expansion for functions with logarithmic singularities follows by differentiation 
with respect to the appropriate parameter. 

It is important to note that when singularities occur within the interval, and 
not only at the endpoints, the constants as and b8 in the equation corresponding to 
(7.9) contain parameters which depend on m, through terms such as (-s - ; 
t, - mtk). Consequently it would be extremely complicated to use expansion (8.1) 
as a basis for Romberg integration. 

9. Behaviour near Rule Singularities. Finally we describe briefly the principal 
features of the asymptotic expansion Ef = Rf - If in the case that the rule Rf 
requires a function evaluation f (tj) at a point tj which is close to a singularity tk of 
f (x). We confine ourselves to considering a simple example, which illustrates ade- 
quately the general situation without involving any complicated algebra. Thus we 
set 

(9.1) f(x) = |x - tk | < -Y < 0 

and consider 

(9.2) At[m 1]f - If = E["` 1f 
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in the case that 

(9.3) tJ j/m=jtk- 

and 

(9.4) 0 < e <<-. 
m 

In this case, the principal contribution to the rule sum is (1/m)f(tj) and 
ly 

(9.5) Rm l]f - e + small terms. 
m 

The integral If is not large. The asymptotic expansion (8.1) for E{m 1f is sirmple 
to write down. We find 

10 (x) = 11 (x) =f (x), 
(9.6)4'()=4()= 

4k (X) = 1, 

(9.7) CO ' 1(tk,y) = (-, mE)/mt + 

(9.8) do0m 1 
(tk,Y) = (-y 1-mE)/mT+l. 

Substituting these values into (8.1) it follows 
N-1 

E[m,lf= E Z ( -S) IPko(0) + (-i)81(8()} 

(9.9) 
()(-y, E) + -(-y, 1 - me) + 

~~~me+l 

Except for the final term, this expansion is identical to the traditional Euler-Mac- 
laurin summation formula (4.24) in the case that f(x) has no singularity. The size 
of this final term may be estimated using Eq. (4.5) in the form 

(9.10) ? (-'y me) = (me)' + P (-'y, 1 + me) 

and the circumstance that (-, 1) is small when 0 < -y < +2. Thus this 
single term in E[m" lf is responsible for a contribution et/m which equals the single 
large term in R m llf. 

The above discussion indicates something more than merely that the identity 
(8.1) Rf - If = Ef is reasonable in this case. It shows that the effect of an unreason- 
ably large value of Rf, resulting from a function evaluation near a singularity, is 
exactly balanced by the first term in that part of the expansion for Ef which arises 
from the existence of that singularity. Thus the formula Rf - If = Ef may be quite 
suitable for numerical computation of If even if Rf is a completely unrealistic ap- 
proximation to If. Its suitability depends principally on the general behaviour of 
the asymptotic expansion for Ef, and the magnitude of Ef is not a particularly use- 
ful criterion. 

10. Conclusion. After this work was completed, our attention was drawn to the 
important work of Navot [5], [6], [7] and of Waterman et al. [8]. The principal 
expansion given by us (8.1) constitutes a generalisation of previous work in that 
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more than one singularity is allowed and a general quadrature rule is also allowed. 
However, the previous work provided a truncation error term in the simpler cases, 
and considered also the effect of an essential singularity. The methods of proof in 
this work are quite different from those in previous work, and we believe somewhat 
simpler. 

Our intention has been to develop the theory of numerical quadrature entirely 
from the point of view of the asymptotic expansion of the error functional, in a man- 
ner in which most of the results are obtained in a straightforward manner. Various 
specific parts of the theory of numerical quadrature usually forming watertight com- 
partments such as rules of high degree, the Monte Carlo method, methods for deal- 
ing with singularities and methods of extrapolation fall into place naturally as the 
theory is developed. Knowledge of the appropriate asymptotic expansion also in- 
dicates clearly why particular methods of quadrature are likely to be unsuccessful 
in particular cases. 
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